pymoo GA: OPV light-intensity dependant JV fits with SIMsalabim (fake data)
This notebook is a demonstration of how to fit light-intensity dependent JV curves with drift-diffusion models using the SIMsalabim package.
[1]:
# Import necessary libraries
import warnings, os, sys, shutil
# remove warnings from the output
os.environ["PYTHONWARNINGS"] = "ignore"
warnings.filterwarnings(action='ignore', category=FutureWarning)
warnings.filterwarnings(action='ignore', category=UserWarning)
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from numpy.random import default_rng
import torch, copy, uuid
import pySIMsalabim as sim
from pySIMsalabim.experiments.JV_steady_state import *
import ax, logging
from ax.utils.notebook.plotting import init_notebook_plotting, render
init_notebook_plotting() # for Jupyter notebooks
try:
from optimpv import *
from optimpv.optimizers.pymooOpti.pymooOptimizer import PymooOptimizer
except Exception as e:
sys.path.append('../') # add the path to the optimpv module
from optimpv import *
from optimpv.optimizers.pymooOpti.pymooOptimizer import PymooOptimizer
[INFO 01-20 10:51:08] ax.utils.notebook.plotting: Injecting Plotly library into cell. Do not overwrite or delete cell.
[INFO 01-20 10:51:08] ax.utils.notebook.plotting: Please see
(https://ax.dev/tutorials/visualizations.html#Fix-for-plots-that-are-not-rendering)
if visualizations are not rendering.
Define the parameters for the simulation
[2]:
params = [] # list of parameters to be optimized
mun = FitParam(name = 'l2.mu_n', value = 7e-8, bounds = [1e-9,1e-6], log_scale = True, value_type = 'float', fscale = None, rescale = False, display_name=r'$\mu_n$', unit='m$^2$ V$^{-1}$s$^{-1}$', axis_type = 'log', force_log = True)
params.append(mun)
mup = FitParam(name = 'l2.mu_p', value = 5e-8, bounds = [1e-9,1e-6], log_scale = True, value_type = 'float', fscale = None, rescale = False, display_name=r'$\mu_p$', unit=r'm$^2$ V$^{-1}$s$^{-1}$', axis_type = 'log', force_log = True)
params.append(mup)
bulk_tr = FitParam(name = 'l2.N_t_bulk', value = 1e20, bounds = [1e19,1e22], log_scale = True, value_type = 'float', fscale = None, rescale = False, display_name=r'$N_{T}$', unit=r'm$^{-3}$', axis_type = 'log', force_log = False)
params.append(bulk_tr)
preLangevin = FitParam(name = 'l2.preLangevin', value = 1e-2, bounds = [0.005,1], log_scale = True, value_type = 'float', fscale = None, rescale = False, display_name=r'$\gamma_{pre}$', unit=r'', axis_type = 'log', force_log = False)
params.append(preLangevin)
R_series = FitParam(name = 'R_series', value = 1e-4, bounds = [1e-5,1e-3], log_scale = True, value_type = 'float', fscale = None, rescale = False, display_name=r'$R_{series}$', unit=r'$\Omega$ m$^2$', axis_type = 'log', force_log = False)
params.append(R_series)
# save the original parameters for later
params_orig = copy.deepcopy(params)
Generate some fake data
Here we generate some fake data to fit. The data is generated using the same model as the one used for the fitting, so it is a good test of the fitting procedure. For more information on how to run SIMsalabim from python see the pySIMsalabim package.
[3]:
# Set the session path for the simulation and the input files
session_path = os.path.join(os.path.join(os.path.abspath('../'),'SIMsalabim','SimSS'))
input_path = os.path.join(os.path.join(os.path.join(os.path.abspath('../'),'Data','simsalabim_test_inputs','fakeOPV')))
simulation_setup_filename = 'simulation_setup_fakeOPV.txt'
simulation_setup = os.path.join(session_path, simulation_setup_filename)
# path to the layer files defined in the simulation_setup file
l1 = 'ZnO.txt'
l2 = 'ActiveLayer.txt'
l3 = 'BM_HTL.txt'
l1 = os.path.join(input_path, l1)
l2 = os.path.join(input_path, l2)
l3 = os.path.join(input_path, l3)
# copy this files to session_path
force_copy = True
if not os.path.exists(session_path):
os.makedirs(session_path)
for file in [l1,l2,l3,simulation_setup_filename]:
file = os.path.join(input_path, os.path.basename(file))
if force_copy or not os.path.exists(os.path.join(session_path, os.path.basename(file))):
shutil.copyfile(file, os.path.join(session_path, os.path.basename(file)))
else:
print('File already exists: ',file)
# Show the device structure
fig = sim.plot_band_diagram(simulation_setup, session_path)
# reset simss
# Set the JV parameters
Gfracs = [0.1,0.5,1.0] # Fractions of the generation rate to simulate (None if you want only one light intensity as define in the simulation_setup file)
UUID = str(uuid.uuid4()) # random UUID to avoid overwriting files
cmd_pars = [] # see pySIMsalabim documentation for the command line parameters
# Add the parameters to the command line arguments
for param in params:
cmd_pars.append({'par':param.name, 'val':str(param.value)})
# Add the layer files to the command line arguments
# cmd_pars.append({'par':'l1', 'val':l1})
# cmd_pars.append({'par':'l2', 'val':l2})
# cmd_pars.append({'par':'l3', 'val':l3})
# Run the JV simulation
ret, mess = run_SS_JV(simulation_setup, session_path, JV_file_name = 'JV.dat', G_fracs = Gfracs, parallel = True, max_jobs = 3, UUID=UUID, cmd_pars=cmd_pars)
# save data for fitting
X,y = [],[]
X_orig,y_orig = [],[]
if Gfracs is None:
data = pd.read_csv(os.path.join(session_path, 'JV_'+UUID+'.dat'), sep=r'\s+') # Load the data
Vext = np.asarray(data['Vext'].values)
Jext = np.asarray(data['Jext'].values)
G = np.ones_like(Vext)
rng = default_rng()#
noise = rng.standard_normal(Jext.shape) * 0.01 * Jext
Jext = Jext + noise
X = Vext
y = Jext
plt.figure()
plt.plot(X,y)
plt.show()
else:
for Gfrac in Gfracs:
data = pd.read_csv(os.path.join(session_path, 'JV_Gfrac_'+str(Gfrac)+'_'+UUID+'.dat'), sep=r'\s+') # Load the data
Vext = np.asarray(data['Vext'].values)
Jext = np.asarray(data['Jext'].values)
G = np.ones_like(Vext)*Gfrac
rng = default_rng()#
noise = rng.standard_normal(Jext.shape) * 0.005 * Jext
if len(X) == 0:
X = np.vstack((Vext,G)).T
y = Jext + noise
y_orig = Jext
else:
X = np.vstack((X,np.vstack((Vext,G)).T))
y = np.hstack((y,Jext+ noise))
y_orig = np.hstack((y_orig,Jext))
# remove all the current where Jext is higher than a given value
X = X[y<200]
X_orig = copy.deepcopy(X)
y_orig = y_orig[y<200]
y = y[y<200]
plt.figure()
for Gfrac in Gfracs:
plt.plot(X[X[:,1]==Gfrac,0],y[X[:,1]==Gfrac],label='Gfrac = '+str(Gfrac))
plt.xlabel('Voltage [V]')
plt.ylabel('Current density [A/m$^2$]')
plt.legend()
plt.show()
Run the optimization
[4]:
# Define the Agent and the target metric/loss function
from optimpv.models.DDfits.JVAgent import JVAgent
metric = 'nrmse' # can be 'nrmse', 'mse', 'mae'
loss = 'linear' # can be 'linear', 'huber', 'soft_l1'
jv = JVAgent(params, X, y, session_path, simulation_setup, parallel = True, max_jobs = 3, metric = metric, loss = loss)
# Calulate the target metric for the original parameters
best_fit_possible = loss_function(calc_metric(y,y_orig, metric_name = metric),loss)
print('Best fit: ',best_fit_possible)
Best fit: 0.0019756765515358777
[5]:
# Define the optimizer
optimizer = PymooOptimizer(params=params, agents=jv, algorithm='GA', pop_size=20, n_gen=100, name='pymoo_single_obj', verbose_logging=True,max_parallelism=20, )
[6]:
optimizer.optimize() # run the optimization
[INFO 01-20 10:51:08] optimpv.pymooOptimizer: Starting optimization using GA algorithm
[INFO 01-20 10:51:08] optimpv.pymooOptimizer: Population size: 20, Generations: 100
[INFO 01-20 10:51:09] optimpv.pymooOptimizer: Generation 1: Best objective = 0.131506
=================================================
n_gen | n_eval | f_avg | f_min
=================================================
1 | 20 | 0.2101623524 | 0.1315058712
[INFO 01-20 10:51:10] optimpv.pymooOptimizer: Generation 2: Best objective = 0.114552
2 | 40 | 0.1601799521 | 0.1145522371
[INFO 01-20 10:51:10] optimpv.pymooOptimizer: Generation 3: Best objective = 0.102320
3 | 60 | 0.1321878768 | 0.1023200372
[INFO 01-20 10:51:11] optimpv.pymooOptimizer: Generation 4: Best objective = 0.089051
4 | 80 | 0.1135910031 | 0.0890509079
[INFO 01-20 10:51:11] optimpv.pymooOptimizer: Generation 5: Best objective = 0.061026
5 | 100 | 0.0991453340 | 0.0610258186
[INFO 01-20 10:51:11] optimpv.pymooOptimizer: Generation 6: Best objective = 0.021096
6 | 120 | 0.0771031928 | 0.0210964328
[INFO 01-20 10:51:12] optimpv.pymooOptimizer: Generation 7: Best objective = 0.003019
7 | 140 | 0.0514150920 | 0.0030189215
[INFO 01-20 10:51:12] optimpv.pymooOptimizer: Generation 8: Best objective = 0.003019
8 | 160 | 0.0315865794 | 0.0030189215
[INFO 01-20 10:51:12] optimpv.pymooOptimizer: Generation 9: Best objective = 0.003019
9 | 180 | 0.0174407955 | 0.0030189215
[INFO 01-20 10:51:13] optimpv.pymooOptimizer: Generation 10: Best objective = 0.003019
10 | 200 | 0.0099064861 | 0.0030189215
[INFO 01-20 10:51:13] optimpv.pymooOptimizer: Generation 11: Best objective = 0.003019
11 | 220 | 0.0061857056 | 0.0030189215
[INFO 01-20 10:51:13] optimpv.pymooOptimizer: Generation 12: Best objective = 0.002971
12 | 240 | 0.0044101990 | 0.0029706458
[INFO 01-20 10:51:14] optimpv.pymooOptimizer: Generation 13: Best objective = 0.002701
13 | 260 | 0.0036953850 | 0.0027006345
[INFO 01-20 10:51:14] optimpv.pymooOptimizer: Generation 14: Best objective = 0.002701
14 | 280 | 0.0033598072 | 0.0027006345
[INFO 01-20 10:51:15] optimpv.pymooOptimizer: Generation 15: Best objective = 0.002701
15 | 300 | 0.0031378033 | 0.0027006345
[INFO 01-20 10:51:15] optimpv.pymooOptimizer: Generation 16: Best objective = 0.002693
16 | 320 | 0.0030204312 | 0.0026934629
[INFO 01-20 10:51:15] optimpv.pymooOptimizer: Generation 17: Best objective = 0.002693
17 | 340 | 0.0029735572 | 0.0026934629
[INFO 01-20 10:51:16] optimpv.pymooOptimizer: Generation 18: Best objective = 0.002693
18 | 360 | 0.0029236571 | 0.0026934629
[INFO 01-20 10:51:16] optimpv.pymooOptimizer: Generation 19: Best objective = 0.002600
19 | 380 | 0.0028688493 | 0.0026000345
[INFO 01-20 10:51:16] optimpv.pymooOptimizer: Generation 20: Best objective = 0.002600
20 | 400 | 0.0028280617 | 0.0026000345
[INFO 01-20 10:51:17] optimpv.pymooOptimizer: Generation 21: Best objective = 0.002600
21 | 420 | 0.0027251421 | 0.0026000345
[INFO 01-20 10:51:17] optimpv.pymooOptimizer: Generation 22: Best objective = 0.002600
22 | 440 | 0.0027016588 | 0.0026000345
[INFO 01-20 10:51:17] optimpv.pymooOptimizer: Generation 23: Best objective = 0.002600
23 | 460 | 0.0026891073 | 0.0026000345
[INFO 01-20 10:51:18] optimpv.pymooOptimizer: Generation 24: Best objective = 0.002600
24 | 480 | 0.0026785830 | 0.0026000345
[INFO 01-20 10:51:18] optimpv.pymooOptimizer: Generation 25: Best objective = 0.002600
25 | 500 | 0.0026724630 | 0.0026000345
[INFO 01-20 10:51:18] optimpv.pymooOptimizer: Generation 26: Best objective = 0.002600
26 | 520 | 0.0026645424 | 0.0026000345
[INFO 01-20 10:51:19] optimpv.pymooOptimizer: Generation 27: Best objective = 0.002558
27 | 540 | 0.0026461194 | 0.0025581455
[INFO 01-20 10:51:19] optimpv.pymooOptimizer: Generation 28: Best objective = 0.002558
28 | 560 | 0.0026396146 | 0.0025581455
[INFO 01-20 10:51:20] optimpv.pymooOptimizer: Generation 29: Best objective = 0.002558
29 | 580 | 0.0026307772 | 0.0025581455
[INFO 01-20 10:51:20] optimpv.pymooOptimizer: Generation 30: Best objective = 0.002558
30 | 600 | 0.0026194269 | 0.0025581455
[INFO 01-20 10:51:20] optimpv.pymooOptimizer: Generation 31: Best objective = 0.002558
31 | 620 | 0.0026075303 | 0.0025581455
[INFO 01-20 10:51:21] optimpv.pymooOptimizer: Generation 32: Best objective = 0.002558
32 | 640 | 0.0025838699 | 0.0025581449
[INFO 01-20 10:51:21] optimpv.pymooOptimizer: Generation 33: Best objective = 0.002558
33 | 660 | 0.0025701709 | 0.0025581449
[INFO 01-20 10:51:21] optimpv.pymooOptimizer: Generation 34: Best objective = 0.002558
34 | 680 | 0.0025610516 | 0.0025581449
[INFO 01-20 10:51:22] optimpv.pymooOptimizer: Generation 35: Best objective = 0.002557
35 | 700 | 0.0025585712 | 0.0025574595
[INFO 01-20 10:51:22] optimpv.pymooOptimizer: Generation 36: Best objective = 0.002557
36 | 720 | 0.0025582008 | 0.0025574021
[INFO 01-20 10:51:22] optimpv.pymooOptimizer: Generation 37: Best objective = 0.002557
37 | 740 | 0.0025578902 | 0.0025573861
[INFO 01-20 10:51:23] optimpv.pymooOptimizer: Generation 38: Best objective = 0.002557
38 | 760 | 0.0025576404 | 0.0025573820
[INFO 01-20 10:51:23] optimpv.pymooOptimizer: Generation 39: Best objective = 0.002542
39 | 780 | 0.0025566575 | 0.0025422219
[INFO 01-20 10:51:23] optimpv.pymooOptimizer: Generation 40: Best objective = 0.002542
40 | 800 | 0.0025551349 | 0.0025422217
[INFO 01-20 10:51:24] optimpv.pymooOptimizer: Generation 41: Best objective = 0.002542
41 | 820 | 0.0025543563 | 0.0025418575
[INFO 01-20 10:51:24] optimpv.pymooOptimizer: Generation 42: Best objective = 0.002542
42 | 840 | 0.0025498505 | 0.0025418575
[INFO 01-20 10:51:25] optimpv.pymooOptimizer: Generation 43: Best objective = 0.002542
43 | 860 | 0.0025463847 | 0.0025418575
[INFO 01-20 10:51:25] optimpv.pymooOptimizer: Generation 44: Best objective = 0.002542
44 | 880 | 0.0025433191 | 0.0025418575
[INFO 01-20 10:51:25] optimpv.pymooOptimizer: Generation 45: Best objective = 0.002542
45 | 900 | 0.0025420756 | 0.0025418575
[INFO 01-20 10:51:26] optimpv.pymooOptimizer: Generation 46: Best objective = 0.002466
46 | 920 | 0.0025382138 | 0.0024660771
[INFO 01-20 10:51:26] optimpv.pymooOptimizer: Generation 47: Best objective = 0.002434
47 | 940 | 0.0025327622 | 0.0024340962
[INFO 01-20 10:51:26] optimpv.pymooOptimizer: Generation 48: Best objective = 0.002434
48 | 960 | 0.0025235252 | 0.0024340962
[INFO 01-20 10:51:27] optimpv.pymooOptimizer: Generation 49: Best objective = 0.002433
49 | 980 | 0.0025127591 | 0.0024333327
[INFO 01-20 10:51:27] optimpv.pymooOptimizer: Generation 50: Best objective = 0.002433
50 | 1000 | 0.0024995586 | 0.0024333327
[INFO 01-20 10:51:27] optimpv.pymooOptimizer: Generation 51: Best objective = 0.002423
51 | 1020 | 0.0024605686 | 0.0024232198
[INFO 01-20 10:51:28] optimpv.pymooOptimizer: Generation 52: Best objective = 0.002423
52 | 1040 | 0.0024376829 | 0.0024232198
[INFO 01-20 10:51:28] optimpv.pymooOptimizer: Generation 53: Best objective = 0.002422
53 | 1060 | 0.0024324949 | 0.0024224633
[INFO 01-20 10:51:29] optimpv.pymooOptimizer: Generation 54: Best objective = 0.002422
54 | 1080 | 0.0024312014 | 0.0024224376
[INFO 01-20 10:51:29] optimpv.pymooOptimizer: Generation 55: Best objective = 0.002422
55 | 1100 | 0.0024306561 | 0.0024224334
[INFO 01-20 10:51:29] optimpv.pymooOptimizer: Generation 56: Best objective = 0.002422
56 | 1120 | 0.0024285082 | 0.0024224308
[INFO 01-20 10:51:30] optimpv.pymooOptimizer: Generation 57: Best objective = 0.002422
57 | 1140 | 0.0024253145 | 0.0024223012
[INFO 01-20 10:51:30] optimpv.pymooOptimizer: Generation 58: Best objective = 0.002421
58 | 1160 | 0.0024224734 | 0.0024212447
[INFO 01-20 10:51:30] optimpv.pymooOptimizer: Generation 59: Best objective = 0.002405
59 | 1180 | 0.0024209597 | 0.0024049921
[INFO 01-20 10:51:31] optimpv.pymooOptimizer: Generation 60: Best objective = 0.002405
60 | 1200 | 0.0024205578 | 0.0024049921
[INFO 01-20 10:51:31] optimpv.pymooOptimizer: Generation 61: Best objective = 0.002405
61 | 1220 | 0.0024190683 | 0.0024049921
[INFO 01-20 10:51:31] optimpv.pymooOptimizer: Generation 62: Best objective = 0.002405
62 | 1240 | 0.0024169204 | 0.0024049921
[INFO 01-20 10:51:32] optimpv.pymooOptimizer: Generation 63: Best objective = 0.002405
63 | 1260 | 0.0024135431 | 0.0024049921
[INFO 01-20 10:51:32] optimpv.pymooOptimizer: Generation 64: Best objective = 0.002400
64 | 1280 | 0.0024094779 | 0.0024004520
[INFO 01-20 10:51:32] optimpv.pymooOptimizer: Generation 65: Best objective = 0.002400
65 | 1300 | 0.0024076029 | 0.0024004520
[INFO 01-20 10:51:33] optimpv.pymooOptimizer: Generation 66: Best objective = 0.002400
66 | 1320 | 0.0024057666 | 0.0024004517
[INFO 01-20 10:51:33] optimpv.pymooOptimizer: Generation 67: Best objective = 0.002400
67 | 1340 | 0.0024041949 | 0.0024004517
[INFO 01-20 10:51:34] optimpv.pymooOptimizer: Generation 68: Best objective = 0.002400
68 | 1360 | 0.0024034219 | 0.0024004517
[INFO 01-20 10:51:34] optimpv.pymooOptimizer: Generation 69: Best objective = 0.002400
69 | 1380 | 0.0024024350 | 0.0024000941
[INFO 01-20 10:51:34] optimpv.pymooOptimizer: Generation 70: Best objective = 0.002400
70 | 1400 | 0.0024007751 | 0.0024000941
[INFO 01-20 10:51:35] optimpv.pymooOptimizer: Generation 71: Best objective = 0.002400
71 | 1420 | 0.0024004136 | 0.0024000941
[INFO 01-20 10:51:35] optimpv.pymooOptimizer: Generation 72: Best objective = 0.002400
72 | 1440 | 0.0024003903 | 0.0024000941
[INFO 01-20 10:51:35] optimpv.pymooOptimizer: Generation 73: Best objective = 0.002400
73 | 1460 | 0.0024003742 | 0.0024000941
[INFO 01-20 10:51:36] optimpv.pymooOptimizer: Generation 74: Best objective = 0.002400
74 | 1480 | 0.0024003050 | 0.0024000941
[INFO 01-20 10:51:36] optimpv.pymooOptimizer: Generation 75: Best objective = 0.002400
75 | 1500 | 0.0024002245 | 0.0024000735
[INFO 01-20 10:51:36] optimpv.pymooOptimizer: Generation 76: Best objective = 0.002400
76 | 1520 | 0.0024001586 | 0.0024000509
[INFO 01-20 10:51:37] optimpv.pymooOptimizer: Generation 77: Best objective = 0.002372
77 | 1540 | 0.0023987008 | 0.0023718976
[INFO 01-20 10:51:37] optimpv.pymooOptimizer: Generation 78: Best objective = 0.002372
78 | 1560 | 0.0023972682 | 0.0023718976
[INFO 01-20 10:51:38] optimpv.pymooOptimizer: Generation 79: Best objective = 0.002371
79 | 1580 | 0.0023920535 | 0.0023705718
[INFO 01-20 10:51:38] optimpv.pymooOptimizer: Generation 80: Best objective = 0.002335
80 | 1600 | 0.0023809753 | 0.0023348679
[INFO 01-20 10:51:38] optimpv.pymooOptimizer: Generation 81: Best objective = 0.002335
81 | 1620 | 0.0023701992 | 0.0023348679
[INFO 01-20 10:51:39] optimpv.pymooOptimizer: Generation 82: Best objective = 0.002335
82 | 1640 | 0.0023668525 | 0.0023348679
[INFO 01-20 10:51:39] optimpv.pymooOptimizer: Generation 83: Best objective = 0.002335
83 | 1660 | 0.0023631215 | 0.0023348623
[INFO 01-20 10:51:39] optimpv.pymooOptimizer: Generation 84: Best objective = 0.002335
84 | 1680 | 0.0023559795 | 0.0023347960
[INFO 01-20 10:51:40] optimpv.pymooOptimizer: Generation 85: Best objective = 0.002335
85 | 1700 | 0.0023488441 | 0.0023347960
[INFO 01-20 10:51:40] optimpv.pymooOptimizer: Generation 86: Best objective = 0.002335
86 | 1720 | 0.0023434937 | 0.0023347960
[INFO 01-20 10:51:40] optimpv.pymooOptimizer: Generation 87: Best objective = 0.002335
87 | 1740 | 0.0023348412 | 0.0023347960
[INFO 01-20 10:51:41] optimpv.pymooOptimizer: Generation 88: Best objective = 0.002335
88 | 1760 | 0.0023348295 | 0.0023347955
[INFO 01-20 10:51:41] optimpv.pymooOptimizer: Generation 89: Best objective = 0.002335
89 | 1780 | 0.0023348091 | 0.0023347955
[INFO 01-20 10:51:42] optimpv.pymooOptimizer: Generation 90: Best objective = 0.002335
90 | 1800 | 0.0023347962 | 0.0023347955
[INFO 01-20 10:51:42] optimpv.pymooOptimizer: Generation 91: Best objective = 0.002323
91 | 1820 | 0.0023341923 | 0.0023227254
[INFO 01-20 10:51:42] optimpv.pymooOptimizer: Generation 92: Best objective = 0.002323
92 | 1840 | 0.0023341923 | 0.0023227254
[INFO 01-20 10:51:43] optimpv.pymooOptimizer: Generation 93: Best objective = 0.002323
93 | 1860 | 0.0023335878 | 0.0023227113
[INFO 01-20 10:51:43] optimpv.pymooOptimizer: Generation 94: Best objective = 0.002323
94 | 1880 | 0.0023329863 | 0.0023227113
[INFO 01-20 10:51:43] optimpv.pymooOptimizer: Generation 95: Best objective = 0.002323
95 | 1900 | 0.0023317807 | 0.0023227113
[INFO 01-20 10:51:44] optimpv.pymooOptimizer: Generation 96: Best objective = 0.002323
96 | 1920 | 0.0023305622 | 0.0023225137
[INFO 01-20 10:51:44] optimpv.pymooOptimizer: Generation 97: Best objective = 0.002323
97 | 1940 | 0.0023293536 | 0.0023225137
[INFO 01-20 10:51:44] optimpv.pymooOptimizer: Generation 98: Best objective = 0.002323
98 | 1960 | 0.0023268682 | 0.0023225137
[INFO 01-20 10:51:45] optimpv.pymooOptimizer: Generation 99: Best objective = 0.002323
99 | 1980 | 0.0023244551 | 0.0023225137
[INFO 01-20 10:51:45] optimpv.pymooOptimizer: Generation 100: Best objective = 0.002323
[INFO 01-20 10:51:45] optimpv.pymooOptimizer: Optimization completed after 101 generations
[INFO 01-20 10:51:45] optimpv.pymooOptimizer: Number of function evaluations: 2000
[INFO 01-20 10:51:45] optimpv.pymooOptimizer: Best objective value: 0.002323
100 | 2000 | 0.0023226840 | 0.0023225051
[6]:
<pymoo.core.result.Result at 0x73a3b8fa9e50>
[7]:
# get the best parameters and update the params list in the optimizer and the agent
optimizer.update_params_with_best_balance()
jv.params = optimizer.params # update the params list in the agent with the best parameters
# print the best parameters
print('Best parameters:')
for p,po in zip(optimizer.params, params_orig):
print(p.name, 'fitted value:', p.value, 'original value:', po.value)
print('\nSimSS command line:')
print(jv.get_SIMsalabim_clean_cmd(jv.params)) # print the simss command line with the best parameters
Best parameters:
l2.mu_n fitted value: 1.2957703120615665e-07 original value: 7e-08
l2.mu_p fitted value: 3.663753682084455e-08 original value: 5e-08
l2.N_t_bulk fitted value: 7.912248003855794e+19 original value: 1e+20
l2.preLangevin fitted value: 0.007544798309069992 original value: 0.01
R_series fitted value: 0.00011631902332779839 original value: 0.0001
SimSS command line:
./simss -l2.mu_n 1.2957703120615665e-07 -l2.mu_p 3.663753682084455e-08 -l2.N_t_bulk 7.912248003855794e+19 -l2.preLangevin 0.007544798309069992 -R_series 0.00011631902332779839
[8]:
optimizer.plot_convergence(yscale='log', xscale='linear')
[9]:
# rerun the simulation with the best parameters
yfit = jv.run(parameters={}) # run the simulation with the best parameters
viridis = plt.get_cmap('viridis', len(Gfracs))
plt.figure(figsize=(10,10))
linewidth = 2
for idx, Gfrac in enumerate(Gfracs[::-1]):
plt.plot(X[X[:,1]==Gfrac,0],y[X[:,1]==Gfrac],label='Gfrac = '+str(Gfrac),color=viridis(idx),alpha=0.5,linewidth=linewidth)
plt.plot(X[X[:,1]==Gfrac,0],yfit[X[:,1]==Gfrac],label='Gfrac = '+str(Gfrac)+' fit',linestyle='--',color=viridis(idx),linewidth=linewidth)
plt.xlabel('Voltage [V]')
plt.ylabel('Current density [A m$^{-2}$]')
plt.legend()
plt.show()
[10]:
# Clean up the output files (comment out if you want to keep the output files)
sim.clean_all_output(session_path)
sim.delete_folders('tmp',session_path)
# uncomment the following lines to delete specific files
sim.clean_up_output('ZnO',session_path)
sim.clean_up_output('ActiveLayer',session_path)
sim.clean_up_output('BM_HTL',session_path)
sim.clean_up_output('simulation_setup_fakeOPV',session_path)